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We review the dynamics of polygonal billiards. 
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1. MOTIVATION AND PRELIMINARIES 

In the ten or so years since the publication of ref. 19 polygonal billiards 
have remained an active subject of research in the mathematics and physics 
literature. As a result, our understanding of the subject, although still far 
from being complete, is much better than it was ten years ago. This survey 
attempts to give a broad overview of the dynamics of billiards in polygons, 
with an emphasis on the material that was not in the literature in 1985. 
This is not a survey of the publications on polygonal billiards, and we 
apologize to authors whose work has not been included. The selection of 
topics has been strongly influenced by the personal taste of the author, and 
by space limitations. Thus, we do not discuss quantum polygonal billiards 
(in particular, quantum chaos; see, e.g., refs. 41, 44, and 45). We hope that 
somebody will write a survey on this important subject in the near future. 

A fascinating aspect of the subject is the interplay between the 
geometric shape of the billiard table (i.e., a planar curve) and the 
qualitative features of the billiard dynamics. Hence it is instructive to com- 
pare polygonal billiard tables with other classes of billiard tables. In par- 
ticular, the smooth, strictly convex tables and the dispersing (or Sinai) 
tables produce strikingly different types of billiard dynamics, We recom- 
mend refs. 46 and 15 for a general overview of the subject and a com- 
parative study of billiard dynamics for various types of billiard tables. 
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8 Gutkin 

We assume that the reader is familiar with the basic concepts of planar 
billiard dynamics in general, and only recall the notions that will be used 
in what follows. Let P be a closed, connected polygon in the Euclidean 
plane. We think of P as a bounded region in R 2 whose boundary 0P con- 
sists of a finite number of line segments. It should be clear from the context 
whether we mean P or 0P when we talk about a billiard table. We 
associate with P the billiard flow T', - c~ < t < ~ ,  and the billiard map $. 
The phase space Z = P x  S t of the flow T '  consists of unit vectors with 
footpoints in P, and T '  preserves the standard measure, dx dy dO. T h e  

phase space q~ c Z of ~ consists of inward-directed vectors with footpoints 
in OP. By construction, ~b is a cross section for T', and ~b: ~ ~ ~ is the first 
return map (Fig. 1 ). The vectors v of q~ are parametrized by (s, 0), where 
s is the arclength on 0P and 0 ~< 0 ~< n is the angle between v and OP. T h e  

$-invariant measure on ~, induced by dx dy dO, is dlz = sin 0 dO ds, and we 
refer to it as the standard measure on q~. 

The problems in billiard dynamics usually have to do with t h e  

behavior of billiard trajectories. The questions mainly fall into two 
categories: those concerning statistics and those concerning the topology of 
trajectories. The former belong to ergodic theory, and the latter to 
topological dynamics. The presentation is organized accordingly. Sections 
2 and 3 establish the setting. Section 4 is on ergodic theory, and Section 6 
is on the topological dynamics of polygonal billiards. Section 5 is a mixture 
of results on the borderline between the two kinds of questions. 

In the analysis of billiards dynamics, the singularities of orbits 
produced by the vertices of P play a major role. This is not surprising, 
since a polygon is essentially determined by its vertices. Surprisingly, t h e  

Fig. 1. 
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The billiard [nap for a polygonal table: ~b(s, 0) = (s I , 0] ). 
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convexity of P (or the lack of it) does not seem to be of importance. We 
do not knew of any significant property in polygonal billiard dynamics 
that holds for convex polygons only. The same observation applies to the 
property of P to be simply connected (i.e., to have no holes inside). 

The characteristics of P that are important in the study of billiard 
dynamics have to do with the vertex angles and the relative lengths of the 
edges of P. A polygon P is called rational if the angles between the lines 
containing the edges of P are rational multiples of n. ~54~ Rational polygons 
play an important role in the research on polygonal billiards_ 

The methods and tools used in research on polygonal billiards are 
extremely diverse. They range from Euclidean geometry, ~6~ to ergodic 
theory and functional analysis] 29"33"5~ complex analysis, ~3t'34~ Lie groups 
and hyperbolics geometry, ~5~'52~ general topology ~541 and classical 
analysisJ sl~ 

Consider the mechanical system of two point masses m l and m, 
moving freely in the interval [0, 1] and bouncing elastically off each 
other and off the "walls of the container." Recall that this apparently very 
simple mechanical system (with two degrees of freedom) is equivalent to 
the billiard flow in a right triangle with acute angle equal to arctan 
(m i/m,_) i/2. ~5.46~ By this observation, every fact about billiard dynamics in 
right triangles corresponds to a property of this mechanical system of two 
elastic particles. 

Finally, a remark on the references. When we quote a paper (or 
papers) in a theorem, it does not necessarily mean this particular theorem 
was proved there. Sometimes it means the theorem readily follows from the 
material contained in the quoted sources. 

2. O V E R V I E W  OF T Y P I C A L  E R G O D I C l T Y  

The best available result on the ergodicity of billiards in polygons is 
a theorem of re[ 31. It says, roughly, that the billiard in a typical polygon 
is ergodic (with respect to the standard invariant measure). In order to for- 
mulate this theorem precisely, recall that a polygon P with a given number 
n of vertices and a fixed way of joining them by edges is determined by the 
positions of its vertices in the plane. Requiring that the length of OP be less 
than or ectual to one, and that P contain the origin of R 2, we identify the 
set ~,  of these polygons with a compact subset of R 2'' with a nonempty 
interior. In particular, -3, is a compact metric space. 

A subset Y of a compact metric space X is a dense Ga if Y is an inter- 
section of a countable number of dense open sets. Dense G~ sets are large 
subsets of X, in the sense of category, ~4~ as opposed to the measure- 
theoretic sense. A more precise statement of the theorem ~3~ says that the 
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set ~, c # .  of ergodic polygons is a dense Ga. The theorem, actually, is 
even stronger. Let # be any compact set of polygons with a fixed number 
of sides, such that rational polygons with arbitrarily large angle 
denominators are dense in oj. Then the set g c # of ergodic polygons is a 
dense Ga. Intuitively, this means that a typical polygon in ~J is ergodic. 
Taking for oj, the set of right triangles, we obtain by the preceding remarks 
an important application to classical mechanics. 

Corollary 1. ~3~ The mechanical system of two elastic point masses 
m~ and m2 on the interval is typically ergodic. 

The proof in ref. 31 of the theorem referred to above uses the method 
of re['. 54 of approximating the billiard in an arbitrary polygon by rational 
polygonal billiards. The discussion of the proof is postponed until Section 
4. For the moment note that many simple questions about the ergodicity 
of polygonal billiards remain wide open. For instance, it is not known 
whether the set of ergodic polygons has a positive measure [i.e., the 
standard (Lebesgue) measure in R 2'', the parameter space for n-gons]. 
Moreover, there are no explicit examples of ergodic polygons. 

3, RATIONAL POLYGONS AND DIRECTIONAL 
BILLIARD FLOWS 

Let P be a rational polygon, and let N =  N(P) be the least common 
denominator of the angles ~mi/n~ between the sides of P. By an elementary 
argument 1541 the three-dimensional phase space Z of the billiard flow 
decomposes into the one-parameter family Zo, 0 <~ 0 <~ ~/N, of T'-invariant 
surfaces. A direct geometric construction associates with P a closed 
oriented surface S=S(P) and a one-parameter family of flows T'o, 
0 ~< 0 ~< 2~, on S. For 0 < 0 < rt/N there is a natural isomorphism (S, T' o) 
(Z, T'Jz0). The flows T~ are the directional billiard flows associated with P 
(see refs. 19 and 18 for more details). 

The surface S is tiled by 2N copies of the polygon P. The topology of 
S is determined by one integer, g(S) >t 1, the genus of S, which is easily 
computed from p.~lS~ For instance, if P is a simple polygon, then 

N " mi-- l 
g(s)= I + - ~  _ (1) 

= 1 n i  

where nm~/ni are the vertex angles of P. It is immediate from Eq. (1) that 
S is a torus if and only if P tiles the plane under reflections. This happens 
only in four cases: P is the equilateral triangle, or P is the isoceles right tri- 
angle, or P is the triangle with the angles ~/2, ~/3, ~/6, or P is a rectangle. 
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In all other cases g(S) > 1, and the flows T~ have multisaddle singularities 
at the special points of S. These singular or conical points of S are 
generated ,by the vertices of P with angles rim~n, m > 1. Every such vertex 
produces N/n singular points of S. Let a E S be a singular point. The total 
angle at a is 2rim, and a is a multisaddle with 2m prongs for every direc- 
tional flow T~ (Fig. 2). The Riemannian metric on S inherited from P is 
flat everywhere except at the cone points of S, where the metric is singular. 
The flows T~ decompose the geodesic flow on S with respect to this 
singular flat metric. Each T~ preserves the Lebesgue measure on S induced 
by the metric. (The area of S is 2N times the area of P.) 

These and other elementary fact about the flows T~ on S unfor- 
tunately do not help in answering the main question: for which /9 is the 
flow T~ ergodic (with respect to the standard measure)? The only known 
approach to this question involves the sophisticated techniques of the 
Teichmuller theory of Riemann surfaces. ~3~ The flat singular metric on S 

Fig. 2. Multisaddle with six prongs. 
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is conformally equivalent to a unique metric of curvature - 1 ,  and the 
flows T~ correspond to a particular family of measured foliations, or qua- 
dratic differentials on S (see, e.g., ref. 45 for these notions). The date above 
correspond to the unit tangent bundle of the Teichmuller space fg  of genus 
g. The Teichmuller flow on .ojg is essentially the geodesic flow with respect 
to the Teichmuller metric. ~37} The Teichmuller flow extends to an action of 
the group SL(2, R) on ~g. The flat metric on S gets affinely distorted by 
this action, but remains flat. Thus, we are let to a study of the general flat 
metrics on S, or, equivalently, to the study of holomorphic quadratic dif- 
ferentials on a compact Riemann surface of genus g. This object is non- 
trivial even if g = 1. A detailed study of the Teichmuller flow in genus g > 1 
leads to the following theorem, which is the main result of ref. 31. 

Theorem 1. t311 Let S be a compact Riemann surface of genus 
g>~ l, and let q be a holomorphic quadratic differential on 3". Let 
T'  o, 0 ~< 0 ~< 2n, be the family of directional flows on S, corresponding to the 
"rotated" quadratic differentials ei~ Then T~ is uniquely ergodic for 
Lebesgue almost all 0. 

The property of T~ to be uniquely ergodic means that the Lebesgue 
measure on S is the only invariant measure of T~. It implies the ergodicity 
of T~. By the preceding material, the theorem above yields the main 
property of rational polygonal billiards. 

Corollary 2. t31} The billiard in a rational polygon is ergodic in 
Lebesgue almost all directions. 

The proof of Theorem 1 in ref. 31 is based on the results of ref. 33 and 
uses a number of facts from Teichmuller theory scattered in the literature. 
See ref. 1 for a more self-contained exposition. 

Let P be a rational polygon, and let T~ be the family of directional 
billiard flows. We say that a direction 0 is ergodic (minimal) if the flow T'  o 
is ergodic (minimal). Recall that a flow is minimal if every infinite orbit is 
dense. A geometric characterization of the minimal directions (for a given 
polygon P) implies that the set of nonminimal directions is, at most, count- 
able. ~54~ By the corollary above, the set of nonergodic directions has zero 
measure. It is well known that, in general, the set of nonergodic directions 
is larger that the set of nonminimal directions (see the references in ref. 36). 
For almost integrable polygons, the sets of minimal and ergodic directions 
coincide, and a directions is ergodic if and only if it is "irrational. ''~18" ~9.5} 
There are almost integrable polygons of arbitrarily high genus [see 
Eq. (1)], but the set of these polygons is countable. ~81 A larger class of 
polygons for which the sets of ergodic and minimal directions coincide was 
found by Veech ~51~ (see Proposition 2 in Section 6 below). However, for 
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a typical rational polygon the set of nonergodic directions has positive 
Hausdorff dimension, (39) while the set of nonminimal directions always has 
dimension zero, because it is countable. On the other hand, for any 
rational polygon the Hausdorff dimension of the set of nonergodic direc- 
tions is bounded above by 1/2.136) 

Thus, in the circle of directions, the ergodic directions constitute an 
overwhelming majority. 

4. E R G O D I C I T Y  A N D  M I X I N G  FOR P O L Y G O N A L  BILLIARDS 

A striking application of Theorem 1 to the ergodic theory of (general) 
polygonal billiards is the following result. 

Theo rem 2. {3~1 For every 17, there is a dense G6 ofergodic polygons 
with n vertices. 

Recall the terminology used in the formulation in Section 2. Here is a 
rough sketch of the argument. It is based on the idea of approximating a 
given (irrational) polygon P by a sequence Pi of rational polygons. It is 
intuitively clear that the billiard flow T' of P is a limit of the sequence of 
flows T' i corresponding to P; as i ~ oo. The flows T '  i are not at all ergodic. 
Let M~ be a typical invariant surface for Pi, and let D~= T~IMi be the 
corresponding "ergodic component." As i increases, the least common 
denominator N(i) of the angles of P~ goes to infinity. As a consequence, the 
nonergodic flow T~ is well approximated by an ergodic component D~. 
Thus, as i ~ oo, we have D~ ~ T', yielding the assertion. 

The proof of Theorem 2 in ref. 31 and the exposition in ref. 1 follow 
the scheme above. The approximation of an arbitrary polygon by rational 
polygons was first used in billiard dynamics in ref. 54. In fact, A. Katok 
and M. Boshernitzan pointed out to the authors of ref. 31 that the 
approximation technique of ref. 54 allows one to obtain Theorem 2 from 
Corollary 2. (28} 

A similar technique of approximation is used to produce directional 
billiards which are weakly mixing. (23~ Recall that the weak mixing property 
of ergodic theory is stronger than ergodicity and weaker than mixing (see, 
e.g., ref. 12 or ref. 53). A prevailing opinion in the mathematical community 
is that polygonal billiards are never mixing, but this has not been estab- 
lished. On the other hand, it seems plausible that there are weakly mixing 
polygons, but this also remains an open question. Results of ref. 23 provide 
partial evidence for this conjecture. 

Denote by ~,, the set of n-gons such that their sides are either horizon- 
tal or vertical (Fig. 3). The polygons P in .~, are rational, and the space 
~,,, coordinatized by the lengths of the sides of P, becomes an open subset 

822/83/I-2-2 
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Fig. 3. Polygon whose sides are either horizontal or vertical. 

of a Euclidean space. We parametrize the directions in plane by 
0, 0 ~< 0 ~< 2n, so that 0 = 0 corresponds to the positive x-axis. Then for any 
0, the billiard flow T'o(P) in direction 0 is well defined for all polygons P 
in ~,,. The following theorem illustrates the results of ref. 23 on the 
genericity of weak mixing. 

T h e o r e m  3. (see ref. 23, Theorem 1). Let n > 4. Then for any direc- 
tion 0, 0 < 0 <  g/2, the set ~Jm~,~ c ~,, of polygons P such that the flow 
T~(P) is weakly mixing is a dense G~. 

The proof  is based on a suitable approximation argument. Here is the 
main idea. If the lengths of the sides of a polygon P e ~,, are rational, then 
P is an almost integrable polygon, c~8~ This allows one to approximate an 
arbitrary P ~ , ,  by a sequence Pi ~.~,, of almost integrable rational 
polygons. The flows T'o(P i) have nontrivial point spectra] tsj but their size 
shrinks to "zero" as i---, oz. 

The following result supports the conjecture that polygonal billiards 
are not mixing. 

Theorem 4. ~27~ For any rational polygon P and any direction 0, 
the directional billiard flow T'o(P) is not mixing. 
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The proof  of this theorem exploits a remarkable connection between 
the directional billiard flows and the #uerval exchange transforma- 
tionsJ 12"32~ The polygonal billiard map ~b=~b(P) has special features ~291 
(distinguishing it from an arbitrary billiard map). If P is rational, then the 
phase space q~ of ~b decomposes into a one-parameter family of ~b-invariant 
subsets q~0, where 0 <~ 0 ~< rc/N runs through the set of directions. Under a 
natural isomorphism, the sets ~o become intervals (we can normalize them 
to be [0,1)), and the directional billiard maps ~b o become interval 
exchanges, q~o: [0,1) ~ [0,1). An interval exchange map is realized by 
cutting [0,1) into n subintervals and rearranging them according to a 
permutation w on n symbols. For  a fixed w, any interval exchange is deter- 
mined by the n-tuple of lengths at ..... a , ,>0 ,  a~+ ... + a , , = l ,  of the 
exchanged intervals. 

By the preceding remarks, the family T'o(P) of directional billiard 
flows in a rational polygon P corresponds to a one-parameter family of 
interval exchanges. More generally, there is a correspondence between 
certain flows on surfaces and the interval exchange transformationsJ 2" 131 
This connection has been fruitful in both directionsJ 3' 5 7.9, 33.48.50. 271 

5. TOPOLOGY OF BILLIARD TRAJECTORIES, 
ORBIT CODING, AND ENTROPY 

Let P be an arbitrary polygon. The billiard dynamics in P has two 
kinds of discontinuities. One is due to the flatness of the sides of P. It has 
a minor effect on the dynamics, and will not be considered in what follows. 
The other kind of discontinuity is caused by the vertices of P. Namely, the 
nearby trajectories separate, as they hit OP on opposite sides of a vertex. 
As a side effect, there are four different kinds of trajectories. The infinite 
trajectories are defined for all times. They never hit a vertex. The finite 
trajectories are only defined for a finite time interval. They begin and end 
at vertices (the generalized diagonals of p).I29~ The other two kinds are the 
semi-infinite trajectories. They are defined either for an infinite past or for 
an infinite future. 

In this section we study the topological properties of the trajectories of 
billiards in polygons. We think of them as lines in the phase space, or as 
piecewise lifiear curves in the billiard table (i.e., the configuration space). It 
is useful to go back and forth between these representations. It should be 
clear from the context which one of the two pictures we have in mind. 

The standard notions of topological dynamics <53~ assume that the flow 
(or the mapping) is continuous. Although this is not the case for billiards 
in polygons, the discontinuities are mild, and the basic definitions are easily 
modified to apply in our situation. In what follows we use the standard 
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terminology of topological dynamics, with occasional clarifications, to 
account for the singularities. 

Recall that a flow is transitive (minimal) if there exists a dense orbit 
(every infinite or semiinfinite orbit is dense). The transitivity (minimality) 
makes sense for the full billiard flow, as well as for directional billiard flows 
in a rational polygon. The following theorem is one of the earliest results 
on polygonal billiards. 

T h e o r e m  5. ~54) The set of transitive polygons is a dense Ga. 

The proof is based on the technique of approximation by rational poly- 
gons, and uses a simple criterion for minimality of directional billiard flows. 

It is natural to code billiard orbits by the sides of the polygon that 
they hit consecutively. We will define the necessary notions. Let 
A = {a~ ..... ap} be the set of sides of P. The full  shift space Z on the 
alphabet A consists of infinite sequences w =  {w;eA:  - oo < i <  oo}. 
Analogously one defines the one-sided shifts Z • For instance, w E Z + is 
given by {wi E A: 0 ~< i < oo }. The full shift transformation or: Z ~ Z is given 
by (aw);=  w;+~, i.e., a moves the sequence w =  {w;} one step to the left. 
The one-sided shift transformations are defined analogously. 

It is useful to think of elements of Z ( Z  +-) as infinite words in the 
alphabet A. It is also useful to consider the finite words { w,,w,,+~ . . .w , ;  
m < n} in the alphabet A, and introduce simple operations, e.g., concatena- 
tion, on them. In particular, the meaning of the expression "a finite word 
v is contained in an infinite word w" should be self-explanatory. 

A shift space has a natural topology: two words v and w are close if 
they are equal for a long time. The topology can be given by a metric (non- 
uniquely) which makes the shift a: Z ~ Z a homeomorphism of a compact 
metric space. Its inverse a-~ is the right shift transformation. A subshift 
X c  L" is a closed subset invariant under a. (One defines the subshifts o f Z  • 
analogously.) The simplest subshifts are the subshift o f  finite type (see, e.g., 
refs. 32 and 42). For  the convenience of the reader we describe below the 
subshifts of type two (Markov shifts). 

Let N be p x p matrix whose entries N, 7 are equal to one or zero 
(incidence matrix). The corresponding Markov shift ZN c L" consists of the 
infinite sequences w = { rv;: - - ~  < i < oo} such that all length-two words 
aia j contained in w satisfy the condition N o. = 1. Thus, if all entries of N are 
equal to one (zero), than s  Z, the full shift (ZN= ~ ,  the empty sub- 
shift). Subshifts of finite type, in particular, Markov shifts, often appear in 
topological and smooth dynamics. "2" 32, 42. 30) 

Let now v e ~ .  Let a~oa~, ...a~,,... be the infinite sequence of the 
sides of P that the forward orbit of v hits consecutively. Set f l+(v)= 
{aioag, . . . a ~ . . .  } e Z  § This defines the forward coding map, fl+ : ~ --+ Z +. 
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Reversing the time direction, we define the backward coding map, 
fl+ : q~ ~ - r - ,  where fl_(v) = { . . .ai_,. . .  ai_~aio} is the sequence of sides 
the orbit of  v hit in the past. Putting the past and the future together, we 
define the full coding map, fl: q~ ~ 27. 

For the sake of brevity, we will formulate the results for the full coding 
map, leaving the one-sided counterparts to the reader. We point out that 
despite its apparent simplicity and naturalness, the coding above has cer- 
tain problems. One problem is obvious: the coding is not well defined on 
elements v ~ �9 whose orbits hit the vertices of P. There is nothing we can 
do about it, and that is the bad part. The good part: this set is relatively 
small. Denote by ~si+ng ( l ~ n g )  the set of v e ~  whose orbit hits a vertex 
of P in the future (past). Then q~si~g (q~ 2ng) is a countable union of corn- 

_ .4_ pact analytic curves. So is the full singular set, q~sing-q~sin~ u q~2ng. The 
countable set A = q~ si+~g ca q~ ~,g corresponds to the generalized diagonals of 
P. Thus the full coding fl: l~\l~sing ~ S is well defined. By construction, fl 
semiconjugates the billiard map (b: q~\q~s~,g ---' (i~\l~sing with the shift trans- 
formation on Z'. 

The other problem is that fl may have "artificial discontinuities". Let 
v be a vertex of P with an angle n/n. A pair of parallel billiard orbits hitting 
aP arbitrarily close to v on the opposite sides remains parallel, hence close. 
But their codes are far apart, because they hit different sides of P. We call 
the vertices of P with angles n/n removable vertices. ~-~ Unfolding the table 
P around removable vertices, we associate with P a polyhedral surface 
that covers P. The billiard dynamics in P projects down on the billiard in 
P, and the two have the same basic features. But the points in 13 above the 
removable vertices of P are no longer singular. They are regular points, 
with the angle 2n. Thus P is the resolution of removable singularities of 
p.~zo~ For instance, if P is one of the four types of integrable polygons, then 
P is a flat torus. The billiard in P lifts to the geodesic flow on P, which is, 
of course, nonsingular. 

To simplify the exposition, we assume in most of what follows that P 
has no removable vertices. By the preceding remarks, we can always reduce 
a polygonal billiard to this case. Thus the coding map fl: (~\(~sing ~ '~, is 
well defined, and does not have artificial discontinuities. Let -re c 27 be the 
image of tp aander the coding map. The subshift _re and the character of 
the mapping (onto) fl: q~\~i ,g-- '  _re contain a lot of information about 
the polygonal billiard. 

The size of a subshift X c  _r is measured by the growth rate of the 
number of words of length n contained in X as n ~ ~ .  Denote by X,, the 
set of words w = (a~0 ...ai,,_~) contained in X, and let IX,, I be the cardinality 
of X,. The exponential growth rate h = h(X) = lim sup . . . .  [ n - q o g  IX,, [] is 
an important characteristic of X, called the entropy ofa subsh~t. It is equal 
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to the topological entropy of the shift transformation on X. The entropy of 
a nonempty subshift of finite type is positive, e.g., the entropy of the full 
shift on p symbols is log p. 

The quantity IS,el has a clear dynamical meaning. Namely, [--v,e, I is the 
number of different "histories" of the n-segment billiard orbits in P. The 
combinatorial length (i.e., the number of segments) of finite billiard orbits 
is closely related to their geometric length, but we will not use this relation. 
In what follows, we simply speak of the length of a finite orbit. More 
generally, the growth pattern of the sequence c. = IS.el determines the com- 
plexity of the subshift Z ?. If h(Z F') = lim sup . . . . .  log c./n = O, then c. grows 
subexponentially, and we can look for other estimates. If we can find a 
positive integer d and numbers 0 < a < b such that an a < c,, < bn a, then c. 
grows as a polynomial of degree d, i.e., Z "e has polynomial complexity. 

Theorem 6.129'21"22,14) Let P be an arbitrary polygon. Then the 
entropy of the subshift Z '? is equal to zero. 

The original version of this theorem I-'91 assumes that P is a simply con- 
nected polygon. The work (29) analyzes the metric entropies with respect to 
the shift-invariant measures on Z "p and proves that any such metric entropy 
is zero. By invoking the variationalprinciple, ~3z" 3o) ref. 29 concludes that the 
topological entropy of s is zero. The approach of refs. 21 and 22 is to 
develop a more general theory of topological entropy for a wider class of 
transformations with singularities: the generalized polygon exchanges. In 
particular, refs. 21 and 22 estimate the entropy of s from above by the 
exponential growth rate of the length of the "singular curve" of the nth 
iterate of the billiard transformation. A direct calculation shows that this 
length grows quadratically, yielding h( X ?) = O. 

Corollary 3. For  any polygon P the subshift Z p is of infinite type. 

A complete description of Z e is known only in very special casesJ 26) 
The coding map is not one-to-one on the set of periodic points. The 

reason is that a periodic orbit in a polygon can be moved parallel to itself, 
forming a periodic strip (see Section 6). All orbits in a periodic strip have 
the same, periodic, code. Is the converse true? More precisely, suppose that 
two forward billiard orbits O1 = O(v,) and 02 = O(v,_) keep hitting OP at 
the same sides, yielding fl+(v~)=fl+(v2). It is elementary to see that the 
ulfolded orbits 0'; and O[,' are parallel. 

Theorem 7.114, 20) Let P be an arbitrary polygon. Let v~, v_, E qS\~si+,g 
satisfy f l+(vl)= fl+(v_,). Then v 1, v2 are periodic. 

The version of ref. 14 assumes that P is simply connected (no 
obstacles). Then O1 and 02 are members of a band of parallel orbits, 
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O =  O(v), with the same forward code. The argument in ref. 14 shows that 
any such band is periodic. The version of ref. 20 makes no assumptions on 
P. It is then no longer true that O~ and 02 are contained in a band of 
parallel orbits, since they may be separated by an obstacle inside P. The 
proof in ref. 20 makes use of a global shearing property of polygonal 
billiards. Theorem 7 yields a number of important corollaries. We present 
some of them below. 

Corollary 4. The coding map fl: 45 --, Z "e is one-to-one on the set of 
nonperiodic points. 

Theorem 8. Let P be an arbitrary polygon. Then the metric 
entropy with respect to any billiard-invariant measure is zero. 

We derive Theorem 8 from Theorem 7. It suffices to prove the asser- 
tion for an ergodic invariant measure/ t  on 45. If the support of/ t  is a peri- 
odic orbit, there is nothing to prove, hence we assume that it is supported 
on the set 45apCr of nonperiodic points. By Theorem 7, for any v e (Paper the 
forward code fl+(v) determines v. Hence the "past" fl_(v) is determined by 
the future "future" fl+(v) for a set of full measure in 45 (in our case, all of 
45apCr), implying the claim. 

The idea of the proof above goes back to ref. 4, which established the 
vanishing of the metric entropy with respect to the standard invariant 
measure. The argument is based on the lemma that Lebesgue almost all 
billiard orbits contain vertices of P in their closure/4~ The techniques above 
allow us to strengthen this assertion. 

Theorem 9. ~2~ Let P be any nonintegrable polygon (i.e., P has 
nonremovable vertices). Then the regular points v e 45 satisfy the following 
dichotomy. (i) The orbit O(v) passes arbitrarily close to nonremovable 
vertices of P from both sides in the past and in the future. (ii) The orbit 
O(v) is periodic. 

Recall that the countable set A c 45 consists of elements v e 45 whose 
orbits are the generalized diagonals beginning and ending at the non- 
removable vertices of P. 

T h e o r e m  10.12~ For any nonintegrable polygon, the set A is dense 
in 45. 

In the proof we sketch below, we assume for simplicity that all vertices 
of P are nonremovable. Let, for instance, v e 45ape, be a regular point. Then, 
by Theorem 9, the orbit O -- O(v) passes close to a pair of vertices A_+ in the 
arbitrarily remote past and future. Connecting the vertices A _ ,  A+ in the 
unfolding, we get a sequence of generalized diagonals that converges to O. 
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Now we return to the question of complexity of the subshifts obtained 
by coding billiard orbits in a polygon P. Besides the subshift Z e formed by 
the codes of all orbits, we consider the subshifts Z ~  c Z P obtained from the 
orbits that assume a fixed direction, 0~<0<2n,  in their lifetime. By 
Theorem 6, the sequence [Ze(n)l  (the number of words of length n) grows 
subexponentially. Hence, for any h > 0 and sufficiently large n, we have the 
estimate IZe(n)[ < e  h'. There is a wide consensus that [ZP(n)[ grows, 
actually, at most polynomially. We formulate this as a conjecture. 

Conjecture 1. Let P be an arbitrary polygon. Then the sequence 
[ZP(n)I has (at most) a polynomial growth. 

A more precise version of the conjecture says that for any polygon P, 
there is a polynomial Fe( .  ) so that 

IZ'e(10l ~< Fe(n)  (2) 

Condition (2) would imply (at most) polynomial growth for all kinds of 
dynamical quantities for polygonal billiards (see Section 6). This is cer- 
tainly consistent with the estimates established for rational polygons, f'-~ 251 
Another piece of supporting evidence for Conjecture 1 is the following 
theorem (due to A. Katok). 

Theorem 11. (24) Let P be an arbitrary polygon. Then there is a 
polynomial Fp( �9 ) such that for all directions 0 ~< 0 < 2n, we have 

IZ'ff(n)l ~ F,,(n) (3) 

6. PERIODIC ORBITS FOR BILLIARDS IN P O L Y G O N S  

In any dynamical system, the periodic orbits are important for at least 
two reasons. First, they are, conceptually, the simplest kind of orbit that 
a dynamical system can have. Second, by studying the perturbations of 
periodic points, we often get considerable insight into the dynamics. 

Thus it is disturbing that despite the efforts of many researchers, the 
question of whether every polygon has a periodic orbit remains open. It is 
not even known if every triangle has a periodic orbit. (~6) In this section we 
summarize the known results and the formulate a conjecture. 

Let O be a periodic orbit in a polygon P, and let 17 =17(O) be its (mini- 
mal) period. We choose a side a c OP that O hits, and unfold O starting 
from a. Let Po = P, PI ..... P,,_ ~ .... be the copies of P we obtain in the pro- 
cess of unfolding 1191 and let O" be the unfolded orbit. Let x ~ a be the point 
where O" "starts" and let x,, ~ a,, c OP be the point it "enters" the polygon 
P,,. For any polygon P; in the unfolding, there is an isometry gi e l s o ( R  2) 



Billiards in Polygons 21 

such that P~=giPo. By periodicity of O, we have g,,: a---, a, and 
g,,(Xo) = x,,. The analysis above and the structure of the group of isometries 
of R 2 lead "to the following conclusion. 

Proposition 1. Let O be a periodic orbit of period n, and let the 
notation be as above. (i) If n is odd, then g,, is the gliding reflection about 
O"; it translates points of O" by XoX,,. (ii) I fn  is even, then g,, is the trans- 
lation by the vector XoX,,. 

Proposition 1, despite its simplicity, is useful for the analysis of peri- 
odic billiards orbits. Recall that the group Iso(R'-) is the semidirect product 
of the normal subgroup of translations, which we denote simply by R 2, and 
the group 0(2) of orthogonal 2 x 2 matrices. The natural homomorphism 
d: Iso(R 2) ~ 0(2) corresponds to taking the linear part of g ~ Iso(R'-), and 
Ker(d) = R 2. We denote by Gp c Iso(R 2) the group generated by the reflec- 
tions s;, 1 ~< i<<.p, in the sides of P, and let F e =  d(Ge)~  0(2). The group 
Fe is generated by the matrices a; = d(si) ~ O(2), a~ = id, 1 ~ i <<.p (we call 
them reflections as well). Set Ve c R 2 be the kernel of d: Gp ~ Fe. 

By Proposition 1, any periodic orbit O of odd period determines a 
gliding reflection go ~ Gp (nonuniquely, go depends on the segment of O 
where the unfolding starts). If O has an even period, then it determines a 
translation v o ~ Vp (also nonuniquely). Note that the groups Ge, Fp, Ve 
are important characteristics of P. For example, P is rational (almost 
integrable) if and only-if Fp is finite (Ge is discrete). ~9~ 

Any multiple of a periodic orbit is obviously a periodic orbit. A prone 
periodic orbit is not a multiple of another one. 

Corollary 5. Let O be a prime periodic orbit of period t7 in a 
polygon P. (i) If n is even, then O is contained in a band of parallel peri- 
odic orbits O, of the same length, l ( 0 , )=  1(0). Let S be the maximal band 
containing O. Then S is a closed flat cylinder of length l(O) and width 
w = w ( O ) > 0 .  Each of the boundary circles of S is a finite union of 
generalized diagonals of P. (ii) If i, is odd, then the orbit O is isolated. The 
maximal strip S of periodic orbits parallel to O is a fiat M6bius band of 
length l(0),  and O is the middle of circle of S. The boundary circle of S 
is a union of generalized diagonals. 

The corollary makes an important distinction between the prime 
periodic billiard orbits of odd and even periods. The former are isolated, 
the latter form periodic cylinders, hence are never isolated. Periodic orbits 
contain a lot of geometric information about P. For example, every acute 
triangle has a unique periodic orbit of period 3, the Fagnano geo- 
desic. ~16"46~ The following theorem indicates, in particular, that periodic 
orbits of odd periods may not contribute to the statistics (of periodic orbits). 
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T h e o r e m  12. ~16) In any rational polygon there is (at most) a finite 
number of prime periodic orbits of odd periods. 

An important characteristic of a dynamical system is the asymptotics 
of the number of periodic orbits. By the preceding results, the appropriate 
quantity for polygonal billiards is the number of distinct periodic cylinders 
of length less than l. We denote this function by C(l). A separate argument 
shows that the set of periodic cylinders is (at most) countable. 

Theorem 13. ~29"-'~ Let P be an arbitrary polygon. Then the func- 
tion C(1) grows slower than any exponential, as l--, oz. 

By Corollary 5, C(l) is bounded above by the number of generalized 
diagonals of length less than l. The exponential growth rate of the number 
of generalized diagonals is estimated from above by the entropy of the sub- 
shift -r e , which is equal to zero, by Theorem 6. 

Surprisingly, the theorem above is the only known upper bound on 
the periodic orbits in general polygons. As for a lower bound, there are 
none. On the other hand, periodic orbits in rational polygons have efficient 
bounds from below and from above. The proofs of these estimates use the 
theory of holomorphic quadratic differentials on Riemann surfaces. 

Theorem 14 .  ~35"38) Let P be a rational polygon. Then there are 
positive constants 0 < cj < c2 such that for all sufficiently large values of l, 
we have 

C I l 2 <~ C(l) <~ c212 (4) 

The geometric length of a periodic orbit in equation (4) can be 
replaced by the number of its segments. Parallel to equation (4), there are 
quadratic bounds on the number of generalized diagonals/35"38~ The qua- 
dratic upper bound on the number of generalized diagonals yields an 
alternative proof of Corollary 2. ts~ 

The lower bound in equation (4) implies, in particular, the existence 
of periodic orbits in rational polygons. But that can be proved in a simpler 
way. A billiard trajectory O is perpendicular if a segment of O hits an edge 
of OP at the right angle. 

Theorem 15. t ~6, 8~ Any regular perpendicular trajectory in a rational 
polygon is periodic. 

Since all but a finite number of perpendicular trajectories are regular, 
the theorem above implies the existence of periodic orbits in a rational 
polygon. But Theorem 14 gives much more than the existence, it gives the 
abundance of periodic orbits for rational polygons. We also know that 
periodic points are dense in the phase space. 134' 101 
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The proof of Theorem 15 is elementary. By recurrence and rationality, 
every orbit departing from a side a orthogonally to it returns to a also 
orthogonally. If it returns to the same point of a, it is already periodic. If 
it first returns to a different point, it reflects and backtracks. Hence the 
orbit is periodic. 

The quadratic bounds (4) are not likely to hold for general (irrational) 
polygons. The expectation is that for general polygons there are polyno- 
mial bounds on the number of periodic cylinders. 

Conjecture  2. Let P be an arbitrary polygon. Then there exist 
positive constants c~, c 2 and integers 1 ~<n~ ~<n2 such that for sufficiently 
large / we have 

c, l"' < C(I) < e21 "2 (5) 

For arbitrary rational polygons, equation (4) may well give the best 
possible estimates on the number of periodic cylinders. However, there are 
nontrivial examples when the asymptotics of C(I) can be computed exactly. 

T h e o r e m  16. ~5~' s2~ Let n >~ 3, and let P be an isoceles triangle with 
angles (rr/n, re/n, n ( n -  2)/n), or a regular n-gon. Let IIPI] denote the area of 
P. Then there exists a positive constant c = c(P), depending on the type of 
P, so that, as / ~  co, we have 

c(P) 12 C(I) ~_ ~ (6) 

The explicit values of c(P), computed in refs. 51 and 52, contain 
sophisticated number-theoretic functions. The proof of Eq. (6) involves a 
study of the group of affine diffeomorphisms of the fiat surface S = S(P) 
associated with a rational polygon. This group has a natural homo- 
morphism into SL(2, R). The image Fe c SL(2, R) is a discrete subgroup, 
which is typically small. Equation (6) is related to the fact that for 
polygons P in Theorem 16 the groups Fe are large, in the sense that the 
quotient SL(2, R)/Fe has a finite volume. Such subgroups are called 
lattices in SL(2, R). One of the implications is that the directional flows T~ 
on S satisfy, a surprising dichotomy. 

Proposit ion 2. ~s~) Let P be a rational polygon such that the group 
F e cSL(2 ,  R) is a lattice. Then the set of directions 0~<0<2n is parti- 
tioned according to the following dichotomy: Either all orbits of T' 0 are 
finite (periodic or saddle connections), or the orbits of T~ are all infinite. 

There are many open questions suggested by the results above. For 
instance, can one characterize geometrically the rational polygons satisfying 
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the dichotomy above? Can one find all rational polygons satisfying the 
"prime geodesic theorem" [i.e., Eq. (6)]? There are speculations that the 
(order of magnitude of the) error term in Eq. (6) is relevant for the quan- 
tum chaos. 

We return to the periodic orbits in general (irrational) polygons. 
Computer simulations have suggested that the perpendicular orbits are 
likely to be periodic. .43~ Recently this observation has been partially con- 
firmed mathematically. We will elaborate. 

The arclength along a side a of P induces a (Lebesgue) measure on the 
set of perpendicular trajectories departing from a. Normalizing, the 
measure, we can speak of the probability for a perpendicular trajectory to 
be periodic. 

A polygon P is a generalized parallelogram if there are two straight lines 
1 and m such that each side of P is parallel to either l of m. Note that a 
generalized parallelogram is rational if the angle between l and m is rational. 

Theorem 17. ~1, 24~ Let P be any right triangle or any generalized par- 
allelogram. Then a perpendicular orbit in P is periodic with probability one. 

The theorem yields the existence of periodic orbits for a large class of 
irrational polygons. The proof in ref. 24 is based on an idea of ref. 11, 
where the result is proved for right triangles. Using the equivalence of the 
billiard dynamics in right triangles and the system of two elastic masses, we 
obtain an application to classical mechanics. 

Corollary 6. Let m~ and m2 be arbitrary elastic masses in an inter- 
val. Let at t = 0 one of the masses, say m~, be hitting the wall, while the 
other mass, m_,, is at rest anywhere in the interval. Then the corresponding 
trajectory is periodic with probability one. 

NOTE ADDED IN PROOF 

The long standing "illumination problem" for polygons has been 
solved, in the negative, by G. Tokarsky [56]. He constructs polygons, P, 
and pairs of points, A 0, At, in P, such that the billiard ball starting at A 0 
will never reach A l . 
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